
 

1 
 

Assessment Factors in Species Sensitivity Distributions for the Derivation of Guideline Values for 1 
Aquatic Contaminants 2 

David R. Fox1,2* and Graeme E. Batley3 3 

1Environmetrics Australia, Beaumaris, Victoria 3193, Australia 4 
2University of Melbourne, Parkville, Victoria 3010, Australia 5 

3CSIRO Land and Water, Locked Bag 2007, Kirrawee NSW 2232, Australia 6 

*Email: david.fox@environmetrics.net.au 7 

 8 

Abstract 9 

The development of the Species Sensitivity Distribution (SSD) more than 30 years ago was in direct 10 

response to the many criticisms concerning the use of subjective Assessment (or Application) Factors 11 

(AFs) in widespread use at the time. While not perfect, SSD modelling is statistically defensible 12 

whereas AFs are not. While intuitively appealing, we believe recent guidance recommending the use 13 

of AFs in conjunction with SSD modelling is concerning and has the potential to impose unnecessary, 14 

time-consuming, and expensive follow-up investigations on both regulators and the regulated. This 15 

paper outlines our concerns and presents results of more contemporary analyses to quantify the 16 

impact of arbitrary scaling of SSD model outputs.  17 
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 20 

Introduction 21 

 22 

Species sensitivity distributions (SSDs) are widely used for the derivation of water quality guideline 23 

values (GVs), water quality criteria, and environmental quality standards (EQSs) for chemical 24 

contaminants in aquatic environments (ANZG 2018; Stefan 2002; CCME 2007: EC 2011, 2018). The 25 

development of the SSD methodology has been slow and incremental and despite several well-26 

documented shortcomings (Fox 2016 and references therein), it remains the most scientifically 27 

rigorous, statistically defensible, and ecotoxicologically relevant approach.  28 

The purpose of this paper is to highlight what we perceive to be a disturbing trend whereby the 29 

statistical rigour embedded in the SSD approach is being compromised by a desire to apply an 30 

‘assessment (or application) factor’ (AF) (BC 2019; EC 2011; Belanger and Carr 2019) to the output of 31 

the SSD - typically the HC5 (concentration hazardous to 5% of species) also known as the PC95 32 

(concentration protective of 95% of species).  33 
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The European Commission (EC 2011) recommended applying a default AF of 5 but noted that this 34 

may be reduced ‘where evidence removes residual uncertainty’. Their input dataset should have at 35 

least 10 datapoints for at least 8 taxonomic groups.   As a minimum, the following points are 36 

considered: 37 

“ the overall quality of the database and the endpoints covered, e.g., if all the data are generated 38 

from “true” chronic studies (e.g., covering all sensitive life stages);  39 

 the diversity and representativity of the taxonomic groups covered by the database, and the extent 40 

to which differences in the life forms, feeding strategies and trophic levels of the organisms are 41 

represented;  42 

 knowledge on presumed mode of action of the chemical (covering also long-term exposure). 43 

Details on justification could be referenced from structurally similar substances with established 44 

mode of action;  45 

 statistical uncertainties around the HC5 estimate, e.g., reflected in the goodness of fit or the size of 46 

confidence interval around the 5th percentile, and consideration of different levels of confidence 47 

(e.g. by a comparison between the median estimate of the HC5 with the lower estimate (90% 48 

confidence interval) of the HC5);  49 

 comparisons between field and mesocosm studies, where available, and the HC5 and 50 

mesocosm/field studies to evaluate the level of agreement between laboratory and field evidence.” 51 

A more recent European review of current thinking on the use of SSDs (ECETOC 2014) recommended 52 

a default AF of 2 for the HC5 of the SSD, but indicated that this value can ‘be further refined based on 53 

characteristics of the toxicity data, i.e., representativeness, mode of action, interspecies variability 54 

and uncertainty’.  In British Columbia (BC 2019), the minimum AF is 2, applied to a dataset of 15, 55 

with appropriate taxonomic coverage and no additional residual uncertainties, otherwise an AF of 5 56 

is applied.   57 

In Australia and New Zealand, the SSDs are applied to a dataset of at least 8 (and desirably 15) and 58 

the resultant guideline values (GVs) are classified as having a reliability that is very high, high, 59 

moderate or low, based on the adequacy of the sample size, and the goodness of fit to the SSD 60 

model and whether the dataset contains all chronic data or a mixture of chronic and converted 61 

acute data (Warne et al. 2018). No AFs are applied for reasons that we discuss below.  Implicit in the 62 

GV applications is that the derived values are not to be used in a punitive manner, but, if exceeded 63 

are used as triggers for further investigations involving other lines of evidence, typically evaluated in 64 
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a weight of evidence framework (ANZG 2018). It is worth noting that, in Europe, the EQS derived 65 

using an SSD is a regulatory, legally binding limit, rather than a guideline value. 66 

Dealing with uncertainty 67 

At the heart of the assessment factor approach is an understandable desire to adjust a GV to 68 

account for the many and varied sources of uncertainty that may affect its quantification. While 69 

large assessment factors are commonly used as the default approach to GV derivation where there 70 

are few toxicity data, our criticisms are mainly reserved for their use in conjunction with species 71 

sensitivity distribution (SSD) modelling. We set aside the companion process of using ACRs (acute-to-72 

chronic ratios) to ostensibly convert acute data into chronic equivalents. While the choice of the ACR 73 

is somewhat arbitrary, it doesn’t have to be and as was shown by Fox (2006), this practice can be put 74 

on a more substantive statistical footing.  75 

SSD modelling is an inherently statistical approach whereas the determination and application of an 76 

assessment factor is not. We have no issue with scaling (we do it all the time when we change units), 77 

but what assessment factors are doing is using an HCp (obtained as a point estimate from the fitted 78 

SSD) whose statistical properties (e.g. bias and variance/uncertainty) are well understood and then 79 

adjusting it in a way that lacks transparency and reproducibility while simultaneously altering the 80 

claimed level of protection. We see no point in going through the mechanics of a rigorous statistical 81 

SSD modelling exercise only to subjectively modify the results.  82 

While we readily acknowledge the rightful place of subjectivity in the form of expertise, knowledge, 83 

and scientific understanding, what we are objecting to here is fundamentally different. To be clear, 84 

the assessment factor approach is different to a Bayesian analysis whereby the subjective 85 

component is incorporated and handled in a logical, transparent, and statistically credible manner. 86 

The scaling of an SSD-derived GV by an arbitrary constant (typically a number between 2 and 10) 87 

undermines the statistical underpinnings of the SSD methodology. The quantification of the AF to be 88 

applied in any given situation is based on a subjective evaluation of either the uncertainties around 89 

the derivation of the HC5 (EC 2011) or “the residual uncertainty of the WQG” (BC 2019). However 90 

determined, the rationale behind the AF is that it results in a more stringent GV that imparts a 91 

greater (although unquantified) level of protection to the ecosystem. This is deemed necessary to 92 

account for the many sources of uncertainty in the SSD modelling process. But this implicitly 93 

assumes that the net effect of these uncertainties is to inflate the HC5 which we believe is 94 

unverifiable in any given instance. We have seen SSD analyses based on either poor data, poor 95 

modelling, or a combination of both, that resulted in ultra-conservative HCp values. To further 96 

reduce these by a factor of 2-10 would be both unrealistic and unjustifiable.  97 
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The issue of whether to accommodate the uncertainty in an SSD-derived HCp used to establish 98 

default guideline values (DGVs) in Australia and New Zealand was contemplated more than 20 years 99 

ago during the preparation of the Australian and New Zealand Water Quality Guidelines 100 

(ANZECC/ARMCANZ 2000). At the time it was suggested that the lower limit of a suitably chosen 101 

confidence interval on the HCp estimate be used for this purpose. It was quickly recognised that, at 102 

the time, this proposition was unworkable in practice for the following reasons: (i) there was no 103 

clear basis for choosing the level of confidence; (ii) even for relatively low levels of confidence, the 104 

lower concentration bound was often close to or below naturally occurring concentrations (and 105 

sometimes even negative); and (iii) the resulting metrics (e.g. a 95:90 ‘trigger-value’ where the first 106 

number is the level of protection and the second number is the level of confidence) were confusing 107 

for many people. The Guidelines document (ANZECC/ARMCANZ 2000) also contemplated an 108 

alternative approach using beta-content tolerance intervals (Fox 2000), although this was not 109 

vigorously pursued. However, given the persistent use of assessment factors, further investigation 110 

into the use of tolerance intervals as an alternative to subjective assessment factors is possibly 111 

warranted. Tolerance intervals are subtly different to confidence intervals. The focus of the latter is 112 

an unknown population parameter (such as the true mean or true variance), whereas a tolerance 113 

interval is a probability statement about the fraction of a population contained in some (random) 114 

interval. 115 

The approach reflected in the most recent Guidelines document (ANZG 2018) is to use an SSD model 116 

to obtain a point estimate of the HCp together with its standard error. This latter quantity is a direct 117 

measure of the precision of the estimate which is influenced by stochastic variation in toxicity data 118 

which in turn affects the quality of the fitted SSD model and its predictions. Further advances in SSD 119 

modelling have indicated how uncertainty in the toxicity data can be explicitly incorporated into the 120 

SSD modelling framework (Fox 2010) as well as accommodating model uncertainty (Fox et al. 2021, 121 

Thorley and Schwarz 2018).  122 

It has been argued that in data-poor environments where the sample size is too small to 123 

meaningfully fit an SSD, a predicted no effect concentration (PNEC) be obtained “by dividing the 124 

lowest toxicity value in the substance’s dataset by a certain assessment factor” (Okonski et al. 2021). 125 

We believe this is an inappropriate approach to environmental protection for the following reasons: 126 

 It is based on a single observation (the smallest value) and discards the rest of the data. 127 

 This single data value is entirely dependent on the (subjective) choice of the most 128 
sensitive species in the concentration-response experiments. 129 
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 Extreme values (such as the minimum and maximum) are notoriously unreliable due to 130 
their large sampling variability. 131 

 This highly variable, single data point is then scaled by an arbitrary amount. 132 

 As an estimate of a NEC, the inferred level of protection is 100%, however there is no 133 
way of knowing what level of protection is afforded by scaling the minimum 134 
concentration “by a certain assessment factor”. 135 

With a sample size of effectively n = 1, the only plausible option is to obtain more data.  The 136 

resulting often ultra-conservative GVs are driven by the needs of regulatory agencies for a number 137 

that they can apply, but because the GVs in such cases will frequently be exceeded, they will almost 138 

always be a trigger for further studies to confirm the absence of effects at the measured 139 

environmental concentrations.  In Australia and New Zealand, such low reliability GVs were termed 140 

Environmental Concern Levels (ECLs) (ANZECC/ARMCANZ 2000) and suggested as only interim 141 

working levels.  An example of their conservatism is the GV for aluminium in marine waters where 142 

the ECL was 0.5 µg/L compared to a more recently derived high reliability value of 24 µg/L based on 143 

11 data points in an SSD representing 6 taxonomic groups (Golding et al. 2015).  The problems such 144 

disparate values can cause industry are obvious. Equally there may be a cost if, as in some 145 

jurisdictions, the regulator needs to demonstrate that there is an impact. Published PNECs derived in 146 

the same manner can be equally over-protective depending on the magnitude of the applied AFs. 147 

Clearly, what is required are methods and tools that reduce the subjectivity associated with SSD 148 

modelling rather than increasing it. Recent advances in the use of statistical model-averaging may 149 

provide one such approach. 150 

Advances in the SSD methodology 151 

In 2011, the European advice was to apply log-logistic fits for the SSD, although the use of other 152 

statistical approaches was acknowledged (EC 2011).  The latest advice is that ‘the choice of a 153 

distribution function other than log-normal or log-logistic should be clearly explained’ (EC, 2018). In 154 

2000, Australia and New Zealand pioneered the application of a Burr type III distribution using their 155 

Burrlioz software (ANZECC/ARMCANZ, 2000; Campbell et al. 2000), updated in 2014 (Barry and 156 

Henderson 2014).   157 

A recently completed 2.5-year study by Australian and Canadian researchers undertook a 158 

comprehensive assessment of the statistical underpinnings of SSD modelling with particular 159 

emphasis on the use of Burr III distributions in the Burrlioz software (Fox et al. 2022) and the model-160 

averaging approach used in the R package ssdtools (Thorley and Schwarz 2018).  A major 161 
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recommendation arising from this work was that both jurisdictions use model-averaged SSDs and 162 

the ssdtools software for all future water quality GV derivations (Fox et al. 2022).  163 

Model-averaged SSDs 164 

The strength of model-averaged SSDs is that they (i) remove the need to pick a single ‘best’ 165 

probability model and (ii) the importance of any individual distribution is based entirely on 166 

information-theoretic metrics and not on subjective assessment. This latter feature combined with 167 

the quantification of uncertainties and the provision of confidence intervals negates the need to 168 

further ‘adjust’ estimated HCp values using arbitrary AFs. By way of example, we have reanalysed 169 

the linear alkylbenzene sulfonate (LAS) data supplied as supplemental information by Belanger and 170 

Carr (2019) and shown in our Supplementary Information Table S1.   171 

The ssdtools package (Thorley and Schwarz 2018) uses eight, 1-component distributions as well 172 

as two, 2-component mixture distributions (Fox et al. 2021).  A plot of the empirical cumulative 173 

distribution function (cdf) and fitted distributions from ssdtools for the LAS data is shown in 174 

Figure 1. It is evident that the single-component distributions display a wide variety of left-tail 175 

behaviours while the two 2-component mixture distributions have abrupt left-tails that are no doubt 176 

driven by the unique ability of these distributions to model the atypical toxicity values of the 177 

smallest three data points. Whether a long tail or a short tail is appropriate for these data represents 178 

a major source of uncertainty which the proponents of AFs handle by fitting a single (1-component) 179 

distribution and scaling the resultant HCp by an arbitrary amount. We are perplexed as to how one 180 

meaningfully determines a value to adjust for this model uncertainty. In contrast, the ssdtools 181 

model output provides the quantitative information required (Table 1) (discussed in detail by Fox et 182 

al. 2021). By examining the weight column in Table 1, we immediately see that the inverse Pareto 183 

distribution is not supported at all while the two, 2-component distributions afford the best 184 

representation of these data (in reality, only one of these distributions is required since the fits are 185 

almost identical). 186 

For the LAS data, the model-averaged HC5 is estimated to be 0.223 mg/L with a standard error of 187 

0.091 mg/L and a 95% confidence interval ranging from 0.148 mg/L to 0.497 mg/L. Individual 188 

distributions provided HC5 estimates ranging from 0.0096 mg/L for the Weibull to 0.255 mg/L for the 189 

log-Gumbel. The log-logistic estimated HC5 is 0.208 mg/L and applying an AF of 5 gives a GV of 0.042 190 

mg/L. We estimate that at this low concentration, the level of species protection is 99.7% and not 191 

the assumed 95%. 192 
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The reliability of any SSD-derived GV will be critically dependent on the quality of the input data.  In 193 

Australia and New Zealand, this requires the toxicity testing to pass established QA/QC criteria, 194 

having sufficient data to meet the criterion for a ‘high reliability” GV, and considering the possibility 195 

of bimodality in the dataset (Warne et al. 2018).   196 

In the next section, we more fully investigate the impact of arbitrarily scaling an HC5 obtained from 197 

SSDs fitted to benchmark toxicity data sets in the recently curated R package ssddata (Fisher and 198 

Thorley 2021). 199 

The ssddata toxicity datasets 200 

A key recommendation in Fox et al. (2021) was the establishment of a readily accessible collection of 201 

toxicity data sets that displayed a variety of distributional shapes and tail behaviours that could be 202 

used for the testing and evaluation of statistical methodologies. The R package ssddata (Fisher and 203 

Thorley 2021) was created for that purpose and is available on github at https://github.com/open-204 

aims/ssddata and CRAN https://cran.r-project.org/src/contrib/ssddata_1.0.0.tar.gz . The package 205 

includes a range of datasets sourced from the Canadian Council of Ministers of the Environment 206 

(CCME), the Australian Institute of Marine Science (AIMS), the Commonwealth Scientific and 207 

Industrial Research Organisation (CSIRO), and the Australian and New Zealand water quality 208 

guidelines website (ANZG 2018), as well as anonymous datasets supplied by the Department of 209 

Agriculture Water and the Environment (DAWE) and other parties. Also available in the ssddata 210 

package is a dataset containing various software fits to the ssddata toxicity data that can be used 211 

for comparison purposes (see https://open-aims.github.io/ssddata/reference/ssd_fits.html ). Table 2 212 

provides a complete list of the contents of the package. 213 

Figures 2 and 3 show respectively, the histograms and empirical cdfs for each of the 25 data sets in 214 

the ssddata package. HCp estimates for p = {1,5,10 and 20} were obtained for each of the 25 215 

datasets in ssddata using the ssd_fits_bcanz function in the R package ssdtools  (Thorley 216 

and Schwarz 2018). ssd_fits_bcanz returns model-averaged results based on the default set of 217 

distributions adopted by both the Australian/New Zealand and Canadian jurisdictions. After dividing 218 

these HCp estimates by a range of AFs {1, 2, 4, 8, and 16}, the fitted SSD was used to obtain 219 

estimates of the fraction of species protected at each of the common protection levels {80%, 90%, 220 

95%, and 99%}. The results are summarised in Figure 4 based on the averages for each of the 25 221 

distributions for each of the applied AFs.  As expected, this shows that the effect of applying an AF is 222 

to increase the level of protection – which is the whole point of an AF. Although the profile lines of 223 

Figure 4 indicate a predictable trend in the relationship between actual and assumed levels of 224 

protection, we caution against an attempt to quantify these based on this limited study. Clearly the 225 

https://github.com/open-aims/ssddata
https://github.com/open-aims/ssddata
https://cran.r-project.org/src/contrib/ssddata_1.0.0.tar.gz
https://open-aims.github.io/ssddata/reference/ssd_fits.html
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greatest impact of AFs is at the lower levels of assumed protection. This simply reflects the increased 226 

‘headroom’ at these levels, i.e., the AF can increase the assumed level of protection by 20 227 

percentage points at the 80% assumed protection level, whereas at the 99% level of protection, this 228 

increase is limited to 1 percentage point. Interestingly, the slope of the profile lines in Figure 4 229 

decreases as the AF increases to the point where for an AF=16, the fraction protected is almost a 230 

constant ~98%. Higher AFs are intended to compensate for higher levels of uncertainty and/or data 231 

quality/paucity issues. Our results suggest that in such cases, the level of protection afforded by an 232 

AF-adjusted HCp is independent of p which effectively negates the use of HCps. 233 

Conclusions 234 

To derive default water quality GVs for toxicants, we have shown that, provided that the number of 235 

datasets meets the minimum requirements (ANZG 2018), the application of a state-of-the-art 236 

model-averaging software such as ssdtools will yield the most statistically defensible HC5 values.  237 

The use of assessment factors designed to account for ‘uncertainties’ offers no demonstrable 238 

advantages and may indeed lower values below natural environmental concentrations or analytical 239 

detection limits.  This places requirements for unnecessary additional expensive experimentation on 240 

the ‘polluter’ to demonstrate a lack of impact to the regulator. 241 
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 314 

Table 1. Goodness-of-fit summary statistics from ssdtools for the fitted distributions for LAS shown 315 
in Figure 1. 316 

Distribution ad ks cvm aic aicc bic delta Weight 

burrIII3 0.321 0.122 0.041 76 77.6 78.9 5.2 0.023 

gamma 0.454 0.139 0.049 76.1 76.8 78.0 4.41 0.035 

gompertz 0.464 0.139 0.051 76.1 76.8 78.0 4.41 0.034 

invpareto 2.77 0.383 0.569 89.3 90.0 91.2 17.6 0 

lgumbel 0.591 0.14 0.089 74.9 75.6 76.8 3.21 0.063 

llogis 0.341 0.126 0.044 74.1 74.8 75.9 2.38 0.095 

llogis_llogis 0.195 0.112 0.028 68.3 72.9 73 0.45 0.25 

lnorm 0.342 0.123 0.043 73.2 73.9 75.1 1.49 0.148 

lnorm_lnorm 0.2 0.109 0.025 67.8 72.4 72.5 0 0.313 

weibull 0.41 0.138 0.042 75.9 76.6 77.8 4.2 0.038 

ad= Anderson-Darling statistic; ks= Kolmogorov-Smirnov test statistic; cvm= Cramer-von Mises statistic; aic= Akaike’s 317 
information criterion; aicc= Akaike’s information criterion corrected for sample size; bic= Bayesian information criterion; 318 
delta=aicc-min{aicc}; weight is a measure of the support for the distribution and is a function of delta (see Fox et al. 2021). 319 

 320 

  321 
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 322 

Table 2. Toxicity data sets available in the R package ssddata 323 

Dataframe name Description 

aims_aluminium_marine Species Sensitivity Data for aluminium_marine 

aims_data Species Sensitivity Data provided by AIMS 

aims_gallium_marine Species Sensitivity Data for gallium_marine 

aims_molybdenum_marine Species Sensitivity Data for molybdenum_marine 

anon_a Anonymous Species Sensitivity Data anon_a 

anon_b Anonymous Species Sensitivity Data anon_b 

anon_c Anonymous Species Sensitivity Data anon_c 

anon_d Anonymous Species Sensitivity Data anon_d 

anon_data Anonymous Species Sensitivity Data 

anon_e Anonymous Species Sensitivity Data anon_e 

anzg_data ANZG Species Sensitivity Data 

anzg_metolachlor_fresh Species Sensitivity Data for metolachlor_fresh 

ccme_boron CCME Species Sensitivity Data for ccme_boron 

ccme_cadmium CCME Species Sensitivity Data for ccme_cadmium 

ccme_chloride CCME Species Sensitivity Data for ccme_chloride 

ccme_data CCME Species Sensitivity Data 

ccme_endosulfan CCME Species Sensitivity Data for ccme_endosulfan 

ccme_glyphosate CCME Species Sensitivity Data for ccme_glyphosate 

ccme_silver CCME Species Sensitivity Data for ccme_silver 

ccme_uranium CCME Species Sensitivity Data for ccme_uranium 

csiro_chlorine_marine Species Sensitivity Data for chlorine_marine 

csiro_cobalt_marine Species Sensitivity Data for cobalt_marine 

csiro_data Species Sensitivity Data provided by CSIRO 

csiro_lead_marine Species Sensitivity Data for lead_marine 

csiro_nickel_fresh Species Sensitivity Data for nickel_fresh 

ssd_fits Species Sensitivity Distribution Fit Data 

 324 

  325 
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 326 

 327 

  328 

Figure 1. Values of the empirical cumulative distribution function (solid points) and fitted distributions from 
the ssdtools package for LAS toxicity data in Table S1 
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 329 

Figure 2. Histograms with density smooth overlay for 25 toxicity data sets in ssddata package. Vertical scale is probability density; horizontal scale is 330 
log(concentration). 331 

 332 

  333 
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 334 

Figure 3. Empirical cdfs for 25 toxicity data sets in ssddata package. Vertical scale is fraction affected; horizontal scale is log(concentration). 335 

 336 

 337 
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 338 

Figure 4. Relationship between assumed level of protection and estimated level of protection after 339 
the ssd-derived HC is divided by various assessment factors (plotted points are averages taken over 340 
all 25 data sets in the ssddata package) 341 

 342 
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 351 

Table S1. Chronic toxicity data for linear alkylbenzene sulfonate (LAS) normalised to a chain length of 352 

11.58 alkyl carbons for use in an SSDa 353 

Rank Taxon Mean normalized 
value (mg/L) 

1 Onchorhychus mykiss 0.2349 

2 Lemna minor 0.2448 

3 Tilapia mossambica 0.2554 

4 Corbicula fluminea 0.3591 

5 Ceriodaphnia dubia 0.5979 

6 Microcystis aeruginosa 0.7250 

7 Pimephales promelas 0.9849 

8 Lepomis macrochirus 1.0215 

9 Hyallela Azteca 1.2636 

10 Daphnia magna 1.3702 

11 Brachionus calyciflorus 1.6799 

12 Desmodesmus subspicatus 2.4337 

13 Paratanytarsus parthenogenica 2.6603 

14 Chironomus riparius 2.7868 

15 Poecelia reticulata 3.2407 

16 Chlorella kessleri 3.5491 

17 Elimia sp 3.8574 

18 Elodea canadensis 4.0562 

19 Pseudokirchneriella subcapitata 15.2717 
a Data are taken from the Supplementary Information in Belanger and Carr (2019) originally derived from Belanger et al. 354 
(2016)  355 
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